Soil Microbial Properties and Plant Growth Responses to Carbon and Water Addition in a Temperate Steppe: The Importance of Nutrient Availability
نویسندگان
چکیده
BACKGROUND Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. METHODOLOGY/PRINCIPAL FINDINGS To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. CONCLUSIONS/SIGNIFICANCE Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects.
منابع مشابه
Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe.
As a primary limiting factor in arid and semiarid regions, precipitation strongly influences soil microbial properties. However, the patterns and mechanisms of soil microbial responses to precipitation have not been well documented. In this study, changes in soil microorganisms along an experimental precipitation gradient with seven levels of precipitation manipulation (i.e., ambient precipitat...
متن کاملDifferential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe
Evaluating how autotrophic (SRA), heterotrophic (SRH) and total soil respiration (SRTOT) respond differently to changes of environmental factors is critical to get an understanding of ecosystem carbon (C) cycling and its feedback processes to climate change. A field experiment was conducted to examine the responses of SRA and SRH to water and nitrogen (N) addition in a temperate steppe in north...
متن کاملEffects of Nitrogen Addition and Fire on Plant Nitrogen Use in a Temperate Steppe
Plant nitrogen (N) use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affe...
متن کاملتأثیر روی و مس و شکلهای شیمیایی آنها بر رشد و ترکیب شیمیایی برنج در یک خاک آهکی
Due to low availability of zinc and copper in calcareous soils and the antagonism of these nutrients with each other, the study of their effects on growth and chemical composition of rice seems to have great importance. Also, the relations among different chemical forms of Zn and Cu and plant responses are very important, which can be used in investigation of antagonisms of these nutrients as w...
متن کاملImproved grazing management may increase soil carbon sequestration in temperate steppe
Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the hig...
متن کامل